Why am I receiving this report?

In compliance with the Safe Drinking Water Act Amendments, the Town of Pocahontas is providing its customers with this annual water quality report. This report explains where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. The information in this report shows the results of our monitoring for the period of January 1st to December 31st, 2016 or earlier if not on a yearly schedule.

If you have any questions concerning this report, you may contact Chief Operator 304-248-8156 or Mayor Benjamin Gibson at 276-945-9522. If you have any further questions, comments or suggestions, please attend any of our regularly schedule Town council meetings held on the 3rd. Monday of every month at 7.00 PM at the Pocahontas Court House on 117 West Saint Claire Street, Pocahontas, Va.

Where does my water come from?

Your drinking water source is surface water from Big Spring Branch also known as Abbs Creek or Abbs Valley Creek.

Source Water Assessment

A Source Water Assessment was conducted by the West Virginia Bureau for Public Health (WVBPH). The intake that supplies drinking water to the Town of Pocahontas has a higher susceptibility to contamination, due to the sensitive nature of surface water supplies and the potential contaminant sources identified within the area. This does not mean that this intake will become contaminated only that conditions are such that the surface water could be impacted by a potential contaminant source. Future contamination may be avoided by implementing protective measures. The source water assessment report which contains more information is available for review or a copy will be provided to you at our office during business hours or from the WVBPH 304-558-2981.

The Virginia Department of Health conducted a source water assessment of our system during 2002. The source was determined to be of high susceptibility using the criteria developed by the state in its approved Source Water Assessment Program. The assessment report consists of maps showing the source water assessment area, and inventory of known land use activities or concern, and documentation of any known contamination within the last 5 years. The report is available by contacting your water system representative at the phone number or address given elsewhere in this drinking water report.
Why must water be treated?

All drinking water contains various amounts and kinds of contaminants. Federal and state regulations establish limits, controls, and treatment practices to minimize these contaminants and to reduce any subsequent health effects.

Contaminants in Water

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits of contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).

The source of drinking water (both tap and bottled water) includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals, and, in some cases radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring, or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can, also, come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally-occurring or the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).
Water Quality Data Table

Definitions of terms and abbreviations used in the table or report:

- **MCLG - Maximum Contaminant Level Goal** - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

- **MCL - Maximum Contaminant Level** - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technique.

- **MRDLG - Maximum Residual Disinfectant Level Goal** - the level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect benefits of use of disinfectants to control microbial contaminants.

- **MRDL - Maximum Residual Disinfectant Level** - the highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary to control microbial contaminants.

- **AL - Action Level** - the concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

- **TT – Treatment Technique** - a required process intended to reduce the level of a contaminant in drinking water.

- **Non-detects (ND)** - lab analysis indicates that the contaminant is not present.

- **Parts per million (ppm) or Milligrams per liter (mg/l)** - one part per million corresponds to one minute in two years or a single penny in $10,000.

- **Parts per billion (ppb) or Micrograms per liter** - one part per billion corresponds to one minute in 2,000 years, or a single penny in $10,000,000.

- **Picocuries per liter (pCi/L)** - picocuries per liter is a measure of the radioactivity in water.

- **Level 1 assessment** - a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

- **Level 2 assessment** - a very detailed study of the waterworks to identify potential problems and determine (if possible) why an E. coli PMCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

- **Nephelometric Turbidity Unit (NTU)** - nephelometric turbidity unit is a measure of the clarity, or cloudiness, of water. Turbidity in excess of 5 NTU is just noticeable to the average person. Turbidity is monitored because it is a good indicator of the effectiveness of our filtration system.
Table of Test Results - Regulated Contaminants – for PWS# WV3302852 and PWS# VA1185625

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Unit of Measure</th>
<th>MCLG</th>
<th>MCL</th>
<th>Year collected</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>N</td>
<td>0.17 NTU</td>
<td>100% of monthly samples <0.3</td>
<td>0</td>
<td>TT met if 95% of samples <0.3</td>
<td>2016</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Total organic carbon</td>
<td>N</td>
<td>1.36 NA</td>
<td>NA</td>
<td>NA</td>
<td>TT met if ≥ 1.0</td>
<td>2016</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Combined Radium (pCi/l)</td>
<td>N</td>
<td>0.1 pCi/l</td>
<td>0</td>
<td>5</td>
<td>2009</td>
<td>Discharge from drilling waste; erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>N</td>
<td>0.027 ppm</td>
<td>2</td>
<td>2</td>
<td>2015</td>
<td>Corrosion of household plumbing</td>
<td></td>
</tr>
<tr>
<td>Copper*</td>
<td>N</td>
<td>0.16 ppm</td>
<td>1.3 AL=1.3</td>
<td>2013</td>
<td>Corrosion of household plumbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead*</td>
<td>N</td>
<td>6.5 ppb</td>
<td>0 AL=15</td>
<td>2013</td>
<td>Corrosion of household plumbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>N</td>
<td>1.49 ppm</td>
<td>10</td>
<td>10</td>
<td>2015</td>
<td>Runoff from fertilizer use; leakage from septic tanks, sewage; erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>N</td>
<td>Annual Avg. 1.87 ppm</td>
<td>4 MRDLG</td>
<td>2016</td>
<td>Water additive used to control microbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetic acids (HAAC5)</td>
<td>N</td>
<td>Annual avg. 25 ppb</td>
<td>NA</td>
<td>60</td>
<td>2016</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>N</td>
<td>Annual avg. 9 ppb</td>
<td>NA</td>
<td>80</td>
<td>2016</td>
<td>By-product of drinking water chlorination</td>
<td></td>
</tr>
</tbody>
</table>

* No individual lead or copper samples exceeded the Action Levels.

Table of Test Results - Unregulated Contaminants-2015 for PWS# 3302852 AND PWS# VA1185625

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Unit of Measure</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>N</td>
<td>4.0 ppm</td>
<td>NE</td>
<td>20</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>N</td>
<td>8.6 ppm</td>
<td>250</td>
<td>250</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>N</td>
<td>9.4 ppm</td>
<td>NE</td>
<td>250</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>
The Town of Pocahontas routinely monitors for contaminants in your drinking water according to federal and state laws. The tables above show the results of our monitoring for contaminants. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data presented in the above tables, though accurate, is more than one year old.

MCL’s are set at very stringent levels by the U.S. Environmental Protection Agency. In developing the standards EPA assumes that the average adult drinks 2 liters of water each day throughout a 70-year life span. EPA generally sets MCLs at levels that will result in no adverse health effects for some contaminants or a one-in-ten-thousand to one-in-a-million chance of having the described health effect for other contaminants.

Additional Information

Turbidity is a measure of the cloudiness in water. We monitor it because it is a good indicator of the effectiveness of our filters.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Town of Pocahontas is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

2016 Violations – West Virginia

- 12/1/2016 – Failure to Designate a Chief Operator
- 3/31/2016 – Failure to submit a Revised Total Coliform Rule Sample Plan
- 12/31/16 – Failure to monitor for Lead and Copper during 2\(^{nd}\) half of 2016
- 12/31/16 – Failure to monitor for Arsenic, Inorganics, Volatile Organics, and Nitrate during 2016
- 4/16, 5/16, 8/16, 9/16, 10/16, 11/16, 12/16 – Failure to monitor for Total coliform and chlorine in the distribution system
- 9/30/16, 12/31/16 – Failure to monitor for Total Organic Carbon in 3\(^{rd}\) and 4\(^{th}\) quarters of 2016
- 3/31/16, 12/31/16 – Inadequate removal of organic carbon during 1\(^{st}\) and 4\(^{th}\) quarters of 2016
- 3/31/16, 6/30/16, 9/30/16, 12/31/16 – Failure to monitor for Trihalomethanes/Haloacetic Acids during 1\(^{st}\), 2\(^{nd}\), 3\(^{rd}\), and 4\(^{th}\) quarters of 2016
- 4/16, 5/16, 7/16, 8/16, 9/16, 10/16, 11/16, 12/16- Failure to monitor for chlorine residual in the distribution on a daily basis.

2016 Violations – Virginia

- 12/31/16 – Failure to monitor for Inorganics, Volatile Organics, and Nitrate-Nitrite during 2016
- 9/30/16, 10/31/16, 11/30/16 - Failure to monitor for Total coliform and chlorine in the distribution system
- 9/30/16 - Failure to monitor for Trihalomethanes/Haloacetic acids during 3\(^{rd}\) quarter of 2016
- 9/30/16 - Failure to monitor for Total Organic Carbon in 3\(^{rd}\) quarter of 2016
- 12/31/16 - Failure to monitor for Lead and Copper during 2\(^{nd}\) half of 2016
- 10/16, 11/16, 12/16 – Failure to submit Monthly Operating Report by the 10\(^{th}\) of following month

Beginning in January, 2017 we have been collecting samples as required by the State.